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ABSTRACT

The presence of a magnetic field in the corona adds structure to the

solar wind and almost certainly plays an important role in the energetics of

the flow. Here I will discuss analytical and numerical modeling of gas-magne-

tic field interactions as used to compute steady, global flow. After a brief

and incomplete review, I will describe the approach used in, and results from

a recent global model (Steinolfson, Suess and Wu, 1982). I will then outline

my own ideas on the most effective ways to improve the physical content and

numerical efficiency of these models. Throughout, I will limit myself to

discussing solutions of the MHD equations only in order to find steady-state

flows, even though this will often entail solving time-dependent equations.

INTRODUCTION

One of the more difficult problems in coronal dynamics is to self-consis-

tently compute the large-scale interactions between the plasma and the

magnetic field in order to find the flow geometry. The theoretical models

that have been published generally either incorporate very important approxi-

m_Lions in order to make the analysis tractable, or use "brute force"

numerical solutions. As an example of an essentially analytic approach to MHD

modeling, I describe the results from a quasi-radial flow approximation

(Suess, Richter, Wlnge and Nerney, 1977; Suess, 1979; Winge and Coleman, 1974;

Nerney and Suess, 1975; Suess, 1972). This approximation invoked flow that

was nearly radial, deriving conditions for this requirement as a result from

the analysis. Single-fluid, polytropic flow with no dissipation was assumed,

and the flow was taken to be axisymmetric. The geometrical approximation

means that the analysis cannot be applied near a magnetic cusp. The model was

applied to the northern polar coronal hole of 1973 because observations

provided a density distribution throughout the hole and showed that the hole

was essentially axisymmetric (Munro and Jackson, 1977). The observed density

was matched throughout the entire volume, and the observed geometry of the

boundary was matched to a streamline, minimizing the impact of the polytrope

assumption. The results are shown in Figures I and 2. Important deductions

include an "effective" temperature of I-2 x i0 e deg., a field strength of

0.5 to 1.0 gauss, and a flow speed of a few up to 150 Rm/s at 2 solar radii.

By 5 solar radii, the flow speed varies from less than 50 to over 300 km/s

while the magnetic field is approximately uniform across the hole.

+Also, Department of Astro-Geophysics, University of Colorado,

Boulder, Colorado 80309.
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Figure i. The observed boundary of the northern polar coronal hole (solid curve,

from Munro and Jackson, 1977) and streamlines beginning at 2 solar radii and

polar angles of 20 and 50 degrees. The streamlines have been computed using a

quasi-radial approximation to the MHD equations of motion together with latitude

dependent boundary conditions (from Suess, et al., 1977).
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Figure 2. Latitudinal variations of the radial magnetic field, temperature and

radial velocity at 2 and 5 solar radii. The radial magnetic field, temperature

and observed density variation at 2 solar radii are the boundary conditions for

this, and the streamline results in Figure i (Suess, e__ttal., 1977).
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Significant energy deposition is implied between 2 and 5 solar radii.

However, because this analysis cannot treat global flows that include regions

of closed magnetic fields, it cannot be carried much beyond this particular

example. The only obvious extensions would be to relax the polytrope

assumption to permit thermal dissipation, and to include momentum and energy
source terms.

In a corona with both closed, magnetostatic regions, and open, coronal-

hole-like regions, the problem of the global gas-magnetic field interactions

is both totally nonlinear and geometrically complex, almost requiring numeri-

cal solution. Probably the most pioneering work was that by Pneuman and Kopp

(1971), who constructed a solution for an axisymmetric, isothermal streamer

configuration on a two-dimensional grid. Their solution was found through a

procedure which iterated on the current distribution, and they assumed

isothermal flow.

The ultimate fieldline geometry computed by Pneuman and Kopp is shown in

Figure 3. Originally, there were questions regarding their assumption about

the nature of the cusp. However, these were laid to rest using a numerical

solution of the time-dependent equations of motion (Endler, 1971; Weber,

1978). If the situation is treated as an initial-boundary value problem, then

it is guaranteed that the final state is a true equilibrium configuration. In

this approach, one starts with an initial state consisting of an essentially

arbitrary choice for the fluid and magnetic field variables. The numerical

solution of the time-dependent equations, starting with this non-equilibrium

state, then gradually approaches a stationary coronal configuration. In

applying this approach, it was not only shown that the cusp geometry assumed

by Pneuman and Kopp was a valid equilibrium configuration, but also that the

solution was stable.

These results demonstrated that treatment of steady, global coronal flow

as an initial-boundary value problem is: (i) feasible, (ii) efficient, and

(iii) probably the most powerful approach to the general problem. I would now

like to describe results from an application of this approach to polytropic

rather than isothermal flow, for a survey of the effect of varying magnetic

field strength (Steinolfson, et. al, 1982).

THE PROBLEM AND THE EQUATIONS

The assumptions are that the corona can be described by polytropic,

axisymmetric, single fluid flow. The initial state consists of a hydrodynamic

solution to the steady radial equations of motion for a polytropic gas,

superimposed on a dipole magnetic field. No explicit dissipation is included.

This is a generalization over previous work by relaxing the assumption of

isothermal flow. With these assumptions, the time-dependent equations of

motion, in MKS units, are:

ap a a (pv) 2pu_pvcot8 '+ -; = --;-

"
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where the dependent variables are the density, P, radial velocity, Vr,

meridional velocity,v^, pressure, p, radial magnetic field, Br and meridion-

al magnetic field, B_ The independent variables are the radius, r, and the

colatitude, 9. The Constants are the polytropic index, y, magnetic permeabil-

ity, _, universal graviational constant, G,, and the solar mass, Ms.

These equations are solved between 1.0 and 5.0 solar radii, and from the

pole to the equator - the solution is symmetric about the equator. The grid

spacing is 0.1 solar radii in the radial direction, 2.5 degrees in the

meridional direction, the numerical solution uses a modified Lax-Wendroff

differencing scheme, and the time step is chosen to be the maximum allowable

from the usual stability criterion for dissipationless schemes; i.e.,

At = mln(At r, At e) (2)

where

At = r/%
r r

and
Ate = rO/_ O

and (_ , t 8) are the maximum elgenvalues (the sum of the fluid velocity
and the c_aracteristic velocity) in the radial and meridional directions. A

smoothing term is used to reduce numerical oscillations, and it was necessary

to watch for nonzero values of div._ which otherwise often exist in numerical

solutions of multi-dimensional time-dependent MHD problems (Brackbill and

Barnes, 1980). At the inner boundary, two of the six radial characteristic

directions are negative, and consequently, information from the region of

interest propagates upstream to the boundary. In this case, four dependent

variables at the lower boundary can be specified arbitrarily, and two must be

calculated from some form of compatibility relations (Steinolfson and Nakaga-
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wa, 1976). Strictly speaking, the compatibility relations are equations that

can be derived from the equations of motion which must be satisfied by the

dependent variables in each of the characteristic directions. Steinolfson and

Nakagawa have shown that first-order or second-order (linear) extrapolation

often works as well as using the more complex compatibility relations.

Steinolfson, et. al used linear extrapolation to obtain the pressure and

meridional magnetic field at the inner boundary. The radial magnetic field

was held at its initial value so that the total magnetic flux through the

solar surface remains constant. The radial velocity was also held constant

with the exception that it could decrease to zero at the surface inside the

closed field region. The meridional velocity was calculated so that the total

velocity and magnetic field were parallel at the surface. The surface density

was selected so that p/pY was constant.

In the initial state of spherically symmetric flow and a dipole potential

field, the boundary values at I solar radius, and the system constants are:

T = 1.8 x 106 degrees
o

108 -3n = 2.25 x cm
o

y = 1.05

2n k T
o o

B - (3)
B2/8_
o

B = IBI at 1 solar radius at the equator.
O

Using this definition of the plasma beta, results are summarized below for

values of beta from 0. I to 100. Values for the reference magnetic field of

0.83 G and 2.35 G at the equator yield values for the plasma beta of 4 and

0.5, respectively.

RESULTS: RELAXATION TO A STEADY STATE

Beginning with the previously stated initial configuration of a dipole

potential field superimposed on a spherically symmetric flow, the relaxation

then procedes in time until the solution is approximately steady - meaning the

solution did not change appreciably over a period of 2 hours. The interme-

diate states themselves have little physical meaning. However, the relaxation

time to a steady state does have physical meaning - it is typical of the time

the corona would take, given the assumptions of the model, to return to

equilibrium after a large-amplitude perturbation. Figure 4 shows the evolu-

tion of the coronal magnetic field (solid lines) and velocity (vectors) for

beta = 0.5. The initial state is in panel (a), and subseqent states at 4, 8

and 12 hours are shown in panels (b), (c) and (d) respectively. There is

little change after 12 hours. It is easy to see the field lines evolving from

a closed dipole field to a coronal streamer with the closed field lines lying
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beneath and adjacent to open f_Id lines. The dashed line is the sonic curve

and the dotted line is the Alfven curve. The sonic curve is displaced inwards

in the final state, except for a small region around the equator, due to the

general increase in the velocity. In the closed region, the pressure and

density are increased over their initial values, and the velocity is

approximately zero. Figure 5 shows cuts through the final configuration, at

the pole and the equator. The high density and pressure in the closed region

are evident, as is the zero velocity. Enhanced flow in the center of the open

region is due essentially to the effects described by Kopp and Holzer (1976).

However, the overall results are not exactly equivalent because they held the

energy per gram, or flow speed infinitely far from the sun fixed, whereas here

the boundary condition on temperature and velocity was held fixed o__nnthe sun.

The Kopp and Holzer study dealt with the effects of changing "spreading

factor" (overall flux tube divergence), whereas here a change in divergence

occurs naturally along different streamlines.

Some of the effects of differing divergence can be simulated by changing

the magnetic field strength. This was done by changing beta in steps from

100.0 to 0.1. Again, the results cannot be directly compared with those of

Kopp and Holzer because the energy per gram at infinity is not a constant.

The results from changing field strength are summarized in Figures 6 and 7.

Figure 6, showing the maximum pressure and density in the closed region after

scaling by the initial flow values, indicates the physical relevance of the

beta parameter. The curves remain near a value of unity until beta < 1.0.

Then, they rise steeply for values of beta less than ca. 0.5. At the same

time, there is a corresponding general increase in the height of the streamer.

However, the width of the base of the streamer has only a weak dependence on

beta.

Figure 7 shows the latitudinal variation of the pressure, density and

temperature at five solar radii, for a range of beta on either side of unity.

Again, these variables are scaled by their initial values. The velocity is

shown in Figure 8. For values of beta >= I, the only substantial effect is

that the velocity is slightly depressed and the density is enhanced in the

streamer. As beta is reduced below unity, a more rapid change begins to

appear over the open region. Simultaneously, the velocity in the hole begins

to increase rapidly, and the density and temperature begin to decrease. This

is, in general terms, the same phenomenon observed by Kopp and Holzer (1976)

and Steinolfson and Tandberg-Hanssen (1977), and is due to the divergence

along a streamline being more than the underlying radius-squared divergence -

which is commonly called a spreading factor of more than unity.

Note that the maximum velocity at 5 solar radii is not at the center of

the hole, but instead near the edge at a polar angle of 60 degrees at 5 solar

radii. This reflects a combination of the boundary condition on velocity

being spherically symmetric, together with the overall spreading factor

between 1 and 5 solar radii being dominated by potential field-like effects

near the sun. The spreading factor is largest near the edge of the hole,

although it is also larger than unity near the center of the hole. As beta

decreases below unity, the increasing spreading factor causes the sonic

critical point to begin moving rapidly inward (from 3.5 to 2.9 solar radii for

beta decreasing from 9.5 to O.1). As in earlier studies, the consequence is a

rapid increase in local flow speed (but not the terminal flow speed), with the
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largest increase occurring where the spreading factor is largest.

The result of this simulation and survey of magnetic field stength

effects has been to produce a self-consistent streamer-coronal hole configura-

tion. The streamer, in which the closed field region extends slightly more

than I solar radius above the surface and whose width is somewhat less than

the height, is quite similar to a typical streamer in its general features.

The coronal hole is geometricaly similar to, for example, the polar coronal

hole observed during the Skylab period , and the density at the center of the

hole is less than at the edges. However, there is good reason to believe the

velocity should also increase towards the center of the hole (Suess, et. al,

1977). That it doesn't is due to the choice of boundary conditions and the

lack of extended energy and momentum addition other than what is implicit in

the polytrope formulation. The simulation shown in Figures I and 2 gave a

detailed fit to the polar coronal hole data reported by Munro and Jackson

(1977). There, it was shown that a large variation in density and temperature

was required at the inner boundary - 2 solar radii - in order to fit the

observations. In order to fit those data using the model of Steinolfson, et

al., it would be necessary to invoke a corresponding variation at I solar

radius, or to deposit energy into the flow between I and 2 solar radii. The

conclusion then must be that to simulate at least one specific coronal hole,

energy and momentum must be deposited in the flow between I and 2 solar radii

because there is little evidence for the alternative possibility of signifi-

cantly higher temperatures and densities beneath the hole, at the transition

region level.

Before leaving this topic, there are two additional important specific

results worth noting (R. S. Steinolfson, pars. comm.). First, there has

been a question of whether the final configuration shown in Figure 4 is

unique. To address this first question, Steinolfson began with an initial

state that was radically different that that shown in Figure 4. It had the

same spherically symmetric flow field, but now with a strictly radial magnetic

field whose strength at the surface varied in the same way as the radial

component of a dipole field. This exercise requires that field lines can

"reconnect" as they are advected inward through the outer boundary in order to

form the closed field region of the streamer. This is possible here not

because ohmic diffusion is specifically included, but because there is

sufficient numerical diffusion to allow a similar process to occur. The

simulation produced exactly the same final configuration as was found when

starting with a dipole potential field, so that the conclusion is: the present

example has a unique solution. The second question has to do with the

suggestion that standing shock waves may exist for certain ranges of spreading

factor and initial conditions (Holzer, 1977; Habbal and Tsinganos, 1983). The

study of Steinolfson, et al. cannot completely answer the question of whether

these shocks ever actually occur in flows where the transverse pressure

balance in the presence of a magnetic field is explicitly computed, because a

beta of 0. I is not sufficiently small to produce the extreme spreading factors

invoked in some of those studies. However, these computations for beta

between 100 and 0. I are probably sufficient to cover most cases of relevance

to the sun. Since no standing shocks were observed, it is suggested that the

phenomenon may not be of importance in the solar atmosphere.
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PROSPECTFORFUTUREMODELING

The most interesting direction that can be taken in the development of

numerical models of the steady corona would be to include a more detailed

description of the energetics of the flow. The polytropic description is

limited by many well known deficiencies. An obvious step would be to treat

thermal conduction explicitly, and later to expand the calculation to deal

with non-collisional forms of the conductive energy transfer. Other similar,

but less important generalizations would be to include radiative losses and

ohmic diffusion. For detailed models of specific observations, until the

actual processes are discovered, it may also be necessary to include an

empirical description of energy and momentum deposition. As stated earlier,

the model described by Steinolfson, et al. used a modified Lax-Wendroff

differencing scheme, which incorporates explicit time-differencing. Because

of the Courant condition for stability on the maximum time-step, such models

are effectively unuseable for calculations including thermal or ohmic diffu-

sion because the maximum allowable time step decreases linearly with the

largest characteristic speed. Literally thousands of time-steps would be

required with thermal diffusion in order to do the analogous problem to the

relaxation described earlier.

The alternative is to use implicit time-differencing which, although

algebraically complex, is not limited by the Courant condition or round-off

errors proportional to (At/Ax) 2 - as is the case with the Dufort-Frankel

method (Richtmeyer & Morton, 1967). In fact, it is probable that these

schemes would result in a considerable improvement in computational efficiency

- even for the problem treated by Steinolfson, et al. The reason for this is

that, because no particular physical interest exists for the intermediate

steps between the arbitrary initial state and the final steady-state, time

steps too large to resolve specific intermediate dynamic fluctuations can be
used and still arrive at the desired final state. This is because the

steady-state solution, if one exists, is found totally independent of the step

size. The one qualification is that if multiple steady-state solutions exist,

then there is the possibility that the solution that is actually realized will

depend on the step size because a sufficiently large dynamic fluctuation can

cause the asymptotic approach to a final solution to jump to an alternative

branch.

To the best of my knowledge, no implicit scheme has been applied to the

problem described by Steinolfson, et al. As a substitute, I will summarize

the results from a prototype calculation on one-dimenslonal, transonic,

thermally conductive flow (Suess,1982), and outline how the analysis is

extended to multi-dimensional magnetohydrodynamic flow. First, for the

one-dimensional problem, the equations are:

a-S+ =o,

[ _v,. av,. ) _ ap GMp _ --_ -I- v,-_r = a---;-- p r'--T ,

(4a)

(4b)
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_e + l a [r2v,(e+p)]+ 1 ____(rZq)q - GM-- pv,.---_- = O, (4c)

where p is the density, vr is the radial velocity, p is the pressure, e is

the total (kinetic plus internal) energy per unit volume, and M is the mass

of the Sun.

k )T----2pRT,p=2nkT=2p mp+m---_,

R _ 8.317X 107 (cgs).

q = - _ T5/2 _r '

1.99× 10 -5
,c- In A (cgs),

A _ 1.246× 104(T3/n) '/2.

The details of the calculation are described by Suess (1982). The solution

uses three-level implicit time-differencing that is unconditionally stable for

any tlme-step. Solutions are found on a variable temporal and spatial grid

using a near-conservation form of the equations and occasionally with a small

amount of artificial dissipation inserted in such a way as to preserve the

formal accuracy of the differencing scheme. The spatial grid is not split,

and the solution is fully implicit - treating all equations simultaneously.

The algorithm uses a Taylor series expansion and Jacobian matrices to deal

with nonlinear coefficients so that there is no iteration of any kind between

time levels. Finally, although three levels in time are used, the algorithm

requires only two levels to be stored - thereby minimizing memory require-

ments. The algorithm is applied here to a one-dimensional problem, but I

will illustrate, in general terms, application to multi-dimensional problems

after the example. The example is a demonstration of the efficiency of such

algorithms on a classical problem. The initial state is isothermal solar wind

flow with a temperature and density at I solar radius of 2xlO 6 degrees and

10 +7 em -3 respectively, resulting in a flow speed at I AU of ca. q00 km/s.

Figure 9 shows the relaxation at several different radii, beginning with the

third time-step. The time step is allowed to grow if the solution is changing

sufficiently slowly. The relaxation procedes rapidly at first, with some

large oscillations and overshoot, settling down to a steady state inside 30

solar radii after 75-100 hours. The final time step was 22.2 hours and 19

steps were required for a total elapsed time of 108 hours.

The relaxation provides the correct, known solution and the relaxation

time is essentially the advection time. This example is approximately equal
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in computational efficiency to solving the steady-state equations in the

standard way. As soon as an additional process such as radiative loss is

introduced, the relaxation becomes the most efficient technique.

To indicate the procedure for multl-dimenslonal flow, I begin with the

form of the time-d_fferenced equations in the one-dimensional case:

Lar ar J

where spatial differences have not yet been introduced, L is a matrix

operator, AUn is the vector of variables in conservation form - being the

unknown at the next time step, and F is a matrix of known quantities at the

present and previous time steps. Solution involves a matrix inversion or

solution of a system of equations in order to find AU n . In multiple

dimensions, an approximate factorization can be made to give a corresponding
equation of the form (for two dimensions):

L1 a ,
ar

L B___ AUn F + cross terms.
2 8' =

(6)

which is solved in two steps:

r_ _ =

LI a AUn* F + cross terms.

L2 [_ ' _--_-]AUn =AUn*E)ao J

That is, intermediate solutions are found by sweeping in one direction through

the grid, at each time step, and the final solution for that time step is the

produced by sweeping in the other direction through the grid. This is

possible because the equation has been "factored" into operators depending on

spatial gradients in only one direction. In the presence of magnetic fields,

the factorization is not complete - some cross terms involving only the

magnetic field remain. These cross terms are treated explicitly.

This factored implicit algorithm has been applied to a variety of

ordinary hydrodynamic problems (Beam and Warming, 1976), with great success.

It has been found generally to have superior stability limits and great

flexibility. There is every reason to believe that it would work equally as

well for determining steady-state structure in the corona.

CONCLUS ION

I have described the approach to global modeling of the corona as an

initial-boundary value problem in which the configuration is allowed to relax
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in time from someinitial state into a steady state. It is established that

the technique is powerful, flexible and stable. The results include a survey

of changing magnetic field strength effects and address questions about the

uniqueness of the steady state and the possibility of standing shock waves.

Application of advanced numerical methods now holds promise for being able to

extend the present results by addressing the all-important problem of energy

transfer in the corona, even in the presence of magnetic fields.
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